|
|||||
期望收益和R乘数 |
|||||
|
|||||
|
|||||
图6-2显示了一个类似表6l捉球游戏的机会因素为60的样本的交易分布。注意一下第46次和第55次交易之间一连串长期的亏损交易。直到此时,很多玩此游戏的人才渐渐总结出以下规则: (1)确定将要被抓出来的盈利弹球的时间; (2)决定在游戏中的某一未来时刻以违反期望收益的方式下赌,因此,他们从中获得了收益。如果这一连串的亏损在游戏中恰好发生得较早,那么第(2)比较适用。如果这一连串的亏损在游戏中恰好发生得较晚,则第(1 条更适用些。有些参加者的心理迫使他们交易亏损越多。下的赌注越大,因为他们“认为”一次盈利就“躲在某一角落里”。我确信你能够猜出这样一个游戏的一般结果。 图6-3显示了对上述游戏每次以当前资本的固定百分比下注的资本曲线。固定百分比是 1%,1.5%,2% 。赌注为1%的60次实验的回报率是40.7%,并且从最高点到最低点的下跌量是12。3%,交易5、6和10各有一连串明显的亏损。 图6-4显示了以违反期望收益的当前资本的1。0%为赌注的资本曲线,你有64%的机会是正确的,甚至还可能享受一连串为数达10次的盈利交易,但你却会亏损起始资本的37%。 如果你想更好地了解这个系统是如何工作的.可能至少需要评估10倍以上次交易。到那时才能做出一个更好的关于头寸调整(这里是赌注调整)的运算法则并确定杠杆水平。此外,我们还能够测试一下此系统在未来交易中的作用。 我们可以对能设想到的、将来可能发生的很多情形进行心理演练的培养,就是训练我们在那种情形发生时应该做出的反应。记住,即使是这样你也并不能确切知道这个弹球袋或者市场将会表现出什么结果。这就是为什么你的心理演练过程应包括一部分训练自己怎样对突发事件做出反应的内容。 产生了103次交易,其中有60次是亏损的,占58.3%,有43次是盈利的,占41.7%。交易的分布如表6-2所示.每次交易仅交易一个单位.也就是最小头寸大小的交易。那么,总利润=54137美元 总损失=43304美元净利润=10833美元
|
|
相关文章:
前言 |